1. (a) Sketch, on the same axes, in the interval $0 \leq x \leq 180$, the graphs of

$$
y=\tan x^{\circ} \text { and } y=2 \cos x^{\circ},
$$

showing clearly the coordinates of the points at which the graphs meet the axes.
(b) Show that $\tan x^{\circ}=2 \cos x^{\circ}$ can be written as

$$
\begin{equation*}
2 \sin ^{2} x^{\circ}+\sin x^{\circ}-2=0 \tag{3}
\end{equation*}
$$

(c) Hence find the values of x, in the interval $0 \leq x \leq 180$, for which $\tan x^{\circ}=2 \cos x^{\circ}$.

1. (a)

Tangent graph shape M1
180 indicated A1
Cosine graph shape M1
2 and 90 indicated
Allow separate sketches.
(b) Using $\tan x=\frac{\sin x}{\cos x}$ and multiplying both sides by $\cos x .\left(\sin x=2 \cos ^{2} x\right)$ M1

Using $\sin ^{2} x+\cos ^{2} x=1$ M1
$2 \sin ^{2} x+\sin x-2=0(*)$ A1

3
(c) Solving quadratic: $\sin x=\frac{-1 \pm \sqrt{17}}{4}$ (or equiv.)
$x=51.3$
(3 s.f. or better, 51.33...) α
A1
$x=128.7$ (accept 129)
(3 s.f. or better) $180-\alpha(\alpha \neq 90 n) \quad$ B1ft 4

1. Graph sketches in part (a) were often disappointing, with the tangent graph in particular proving difficult for many candidates. While some indicated the asymptote clearly, others seemed unsure of the increasing nature of the function or of the existence of a separate branch. Sketches of $y=2 \cos x$ were generally better, although some confused this with $y=\cos 2 x$.

Part (b) was usually well done, with most candidates being aware of the required identities $\tan x=\frac{\sin x}{\cos x}$ and $\sin ^{2} x+\cos ^{2} x=1$.
Although in part (c) some candidates produced a factorisation of the quadratic function, the majority used the quadratic formula correctly to solve the equation.

A few the omitted the second solution, but apart from this the main mistake was to approximate prematurely and then to give the answer to an inappropriate degree of accuracy (e.g. $\sin x=$ 0.78 , therefore $x=51.26$).

